زنگنه-اسدی، م.ع.، تقوی مقدم، ا. و اکبری، ا.، 1398 . ارزیابی تغییرات و تعیین سطح جنگلهای مانگرو منطقه حفاظت شده
خورخوران با تاکید بر هیدرودینامیک تنگه هرمز، علوم و تکنولوژی محیط زیست: 21 ( 85 ،) 213-226 .
https://doi.org/10.22034/JEST.2019.22974.3203
خورانی، ا.ا.، بی نیاز، م. و امیری، ح.، 1394 . تغییرات سطح جنگلهای حرا با توجه به نوسانات اقلیمی )مطالعه موردی: جنگلهای
بین بندر خمیر و قشم(، بومشناسی آبزیان: 5 ( 2 ،) 100 - 111 . https://www.magiran.com/paper/1634097
سبحانی، پ. و دانهکار، ا.، 1401 . بررسی شرایط اقلیم گردشگری در جنگلهای مانگروی ایران با استفاده از شاخص اقلیم آسایش
گردشگری ) TCI ( و شاخص اقلیم تعطیلات ) HCI (، محیطزیست طبیعی: 75 ، 29 - 45 .
https://doi.org/10.22059/JNE.2022.351668.2494
سبحانی، پ. و دانه کار، ا.، 1402 . مروری بر مطالعات سیمای طبیعی و محدودههای مدیریتی جنگلهای مانگرو خمیر و قشم،
طبیعت ایران: 8 ( 41-4 ،) 112-97 . https://doi.org/10.22092/irn.2019.120092
صفری، ج.، مافی غلامی، د. و محمودی، ب.ع.، 1398 . نقشهبرداری فضایی تغییرات ساختاری حرا با استفاده از ماهواره لندست 8
در ذخیره گاه زیست کره حرا، دومین همایش ملی منابع طبیعی و توسعه پایدار در زاگرس، 7 .
https://elmnet.ir/article/20953676-12461
قدرتی شجاعی، م.، طاهری میرقائد، ع.، مشهدی فراهانی، م.، دلفان، ن. و ویجت، م.، 1398 . تعیین نقش تولیدات اولیه گیاه حرا
Avicenia marina در تغذیه گونه Thryssa setirostris در بوم سازگان مانگروی ذخیره گاه زیستکره حرا به کمک ایزوتوپهای
پایدار کربن. علوم و فنون شیلات: 8 ( 3 ،) 181-175 . https://jfst.modares.ac.ir/article-6-40613-fa
لقایی، ح.ع.، منوری، م. و رئیسی، ب.، 1388 . برنامهریزی و زونبندی ذخیرهگاه زیستکره حرا براساس معیارهای بین المللی با تأکید
بر جزیره قشم ) با استفاده از GIS (، انسان و محیط زیست: 7 ( 1 ،) 39 - 30 . https://he.srbiau.ac.ir/article_6511.html
مافی غلامی، د.، بهارلویی، م. و محمودی، ب.، 1397 . پایش فرسایش و برافزایش در جنگلهای حرا با استفاده از سنجش از دور و
سامانه تجزیه و تحلیل رقومی خط ساحلی ) DSAS ( )مطالعه موردی: ذخیرهگاه زیستکره حرا(، محیطشناسی: 43 ( 4 ،) 633 -
646 . 10.22059 / JES.2018.225288.1007381
مجنونیان، ه.، 1382 . راهنمای برنامهریزی پارکهای ملی، برنامهریزی تمرین و فرآیند آمادهسازی برای طرح مدیریت پارک ملی
تهران، انتشارات سازمان حفاظت محیط زیست، 201 ص. https://www.doe.ir/portal/file/?254949/a9r67.tmp.pdf
مصطفی زاده، ر.، بابایی، ل.، علایی، ن. و حزباوی، ز.، 1401 . شاخص امنیت بومشناختی در حوزه آبخیز کوزهتپراقی، استان اردبیل،
علمی پژوهشهای محیط زیست، 13 ( 26 ،) 209-189 . https://doi.org/10.22034/EIAP.2023.169991
نیک اندیش، ا.، دشتی، س. و سبزقبایی، غ.ر.، 1398 . ارزیابی مخاطرات محیط زیستی در جهت توسعه پایدار در پارکهای ملی و
مناطق حفاظت شده )مطالعه موردی: پارک ملی و منطقه حفاظت شده دز(، جغرافیا و مخاطرات محیطی: 29 ، 43 - 63 .
10.22067 / GEO.V0I0.69860
Aber, J.S., Marzolff, I. and Ries, J.B., 2010. Image Processing and Analysis (Chapter 11). Small-Format Aerial Photography Principles, Techniques and Geoscience Applications: 159-181. https://doi.org/10.1016/B978-0-444-53260-2.10011-0.
Ait El Haj, F., Ouadif, L. and Akhssas, A., 2023. Simulating and predicting future land-use/land cover trends using CA Markov and LCM models. Case Studies in Chemical and Environmental Engineering: 7, 100342. https://doi.org/10.1016/j.cscee.2023.100342.
Akar, O. and Gungor, O., 2012. Classification of Multispectral Images Using Random Forest Algorithm, Journal of Geodesy and Geoinformation: 1(2), 105-112. https://doi.org/10.9733/jgg.241212.1.
Ansari, A. and Golabi, M.H., 2019. Using Ecosystem Service Modeler (ESM) for Ecological Quality, rarity, and Risk Assessment of the wild goat habitat, in the Haftad-Gholleh protected area, International Soil and Water Conservation Research: 346-353. https://doi.org/10.1016/j.iswcr.2019.08.004
Batar, A.K., Watanabe, T. and Kumar, A., 2017. Assessment of land-use/land-cover change and forest fragmentation in the Garhwal Himalayan Region of India. Environments: 4, 34. https://doi.org/10.3390/environments4020034.
Borrini-Feyerabend, G., Pimbert, M., Farvar, M.T., Kothari, A. and Renard, Y., 2004. Sharing Power: Learning by doing in co-management of natural resources throughout the world, Cenesta, Tehran: IIED and IUCN CEESP/CMWG.
Boston, T., Van Dijk, A., Larraondo, P.R. and Thackway, R., 2022. Comparing CNNs and Random Forests for Landsat Image Segmentation Trained on a Large Proxy Land Cover Dataset. Remote Sens: 14, 3396. https://doi.org/10.3390/rs14143396.
Breiman, L., 2001. Random Forest, Machine Learning: 45(1), 5-32. http://dx.doi.org/10.1023/A:1010933404324.
Chapman, P.M., 2016. Ecological Risk and Weight of Evidence Assessments. Marine Ecotoxicology, http://dx.doi.org/ 10.1016/B978-0-12-803371-5.00009-6.
Chavez, P.S., 1996. Image-based atmospheric Corrections-Revisited and improved. Photogram. Eng. Remote Sens: 62, 1025-1036. 0099-1112/96/6209-1025$3.00/0
Chen, J., Dong, B., Li, H., Zhang, Sh., Peng, L., Fang, L., Zhang, Ch. and Li, Sh., 2020. Study on landscape ecological risk assessment of Hooded Crane breeding and overwintering habitat. Environmental Research: 187, 109649. https://doi.org/10.1016/j.envres.2020.109649.
Cuenca, P., Arriagada, R. and Echeverría, C., 2016. How much deforestation do protected areas avoid in tropical Andean landscapes? Environ. Sci. Policy: 56, 56-66. https://doi.org/10.1016/j.envsci.2015.10.014.
Dai, L., Wang, Y., Lewis, B.J., Xu, D., Zhou, L., Gu, X. and Jiang, L., 2011. The trend of land-use sustainability around the Changbai Mountain Biosphere Reserve in Northeastern China: 1977–2007. Int. J. Sustain. Dev. World Ecol: 19, 369-377. https://doi.org/10.1080/13504509.2012.675599.
Dewa, R.P. and Danoedoro, P., 2017. The effect of image radiometric correction on the accuracy of vegetation canopy density estimate using several Landsat-8 OLI’s vegetation indices: A case study of Wonosari area, Indonesia. IOP Conf. Series: Earth and Environmental Science: 54, 012046. https://doi.org/10.1088/1755-1315/54/1/012046.
Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W. and Li, X., 2016. Water bodiesʼ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens: 8, 354-373. https://doi.org/10.3390/rs8040354.
Elhag, M., Gitas, I., Othman, A., Bahrawi, J. and Gikas, P., 2019. Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments. Saudi Arabia. Water: 11, 556. https://doi.org/10.3390/w11030556.
Fang, X.D., Hou, X.Y., Li, X.W., Hou, W., Nakaoka, M. and Yu, X.B., 2018. Ecological connectivity
Fitrian, E.B. and Boro, W.G., 2022. Analysis of Land Use Land Cover Change in Protected Areas Against Spatial Planning in East Luwu. Earth and Environmental Science: 1097, 012061. https://doi.org/10.1088/1755-1315/1097/1/012061.
Gong, J., Yang, J.X. and Tang, W.W., 2015. Spatially explicit landscape-level ecological risks induced by land use and land cover change in a national ecologically representative region in China. International Journal of Environmental Research and Public Health: 12(11), 14192-14215. https://doi.org/10.3390/ijerph121114192
Guo, H., Cai, Y., Li, B., Tang, Y., Qi, Z., Huang, Y. and Yang, Zh., 2022. An integrated modeling approach for ecological risks assessment under multiple scenarios in Guangzhou, China. Ecological Indicators: 142, 109270. https://doi.org/10.1016/j.ecolind.2022.109270.
Huang, B., Hu, X.P., Fuglstad, G.A., Zhou, X., Zhao, W.W. and Cherubini, F., 2020. Predominant regional biophysical cooling from recent land cover changes in Europe. Nat. Commun: 11, 1-13. https://hdl.handle.net/11250/3012242.
Jamal Faruque, Md., Vekerdy, Z., Yeasir Hasan, Md., Islam, K.Z., Young, B., Tofayal Ahmed, M., Monir, M.D., Shovon, Sh.M., Kakon, J.F. and Kundu, P., 2022. Monitoring of land use and land cover changes by using remote sensing and GIS techniques at human-induced mangrove forests areas in Bangladesh. Remote Sensing Applications: Society and Environment: 25, 100699. https://doi.org/10.1016/j.rsase.2022.100699.
Jin, X., Jin, Y. and Mao, X., 2019. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic: 101, 185-191. https://doi.org/ 10.1016/j.ecolind.2018.12.050
Jones, D.A., Hansen, A.J., Bly, K., Doherty, K., Verschuyl, J.P., Paugh, J.I., Carle, R. and Story, S.J., 2009. Monitoring land use and cover around parks: A conceptual approach. Remote Sensing of Environment Journal: 113, 1346-1356. https://doi.org/10.1016/j.rse.2008.08.018.
Kamusoko, C. and Jonah, J., 2015. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model, International Journal of Geo-Information: 4 (2), 447-470.
https://doi.org/10.3390/ijgi4020447.
Juan, C., Jiménez-Munoz, J., Sobrino, A., Mattar, C. and Franch, B., 2010. Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products. Remote Sensing of Environment: 114, 2195-2210. https://doi.org/10.1016/j.rse.2010.04.022.
Kleeman, J., Baysal, G., Bulley, H.N.N. and Furst, C., 2017. Assessing driving forces of land use and land cover change by a mixed-method approach in North-Eastern Ghana, West Africa. J. Environ. Manag: 196, 411-442. https://doi.org/10.1016/j.jenvman.2017.01.053.
Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. and Lafaye, M., 2007. Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ: 106, 66-74. https://doi.org/10.1016/j.rse.2006.07.012.
Leberger, R., Rosa, I.M., Guerra, C.A., Wolf, F. and Pereira, H.M., 2019. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv: 241, 108299. https://doi.org/10.1016/j.biocon.2019.108299.
Leirpoll, M.E., Naess, J.S., Cavalett, O., Dorber, M., Hu, X. and Cherubini, F., 2021. Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland. Renew. Energ: 168, 45-56. https://doi.org/10.1016/j.renene.2020.11.159.
Li, L., Feng, R. and Xi, J., 2021. Ecological Risk Assessment and Protection Zone Identification for Linear Cultural Heritage: A Case Study of the Ming Great Wall. Int. J. Environ. Res. Public Health: 18 (21), 11605. https://doi.org/10.3390/ijerph182111605.
Li, Sh., He, W., Wang, L., Zhang, Z., Chen, X., Lei, T., Wang, Sh. and Wang, Sh., 2023. Optimization of landscape pattern in China Luojiang Xiaoxi basin based on landscape ecological risk assessment, Ecological Indicators: 146, 109887. https://doi.org/10.1016/j.ecolind.2023.109887.
Li, W., Wei, W. and Boni, L., 2018. Geometric Correction Algorithm for Hyperspectral Images based on GPS, International Journal of Science and Research (IJSR), ISSN: 2319-7064. https://doi.org/10.21275/SR20331142109.
Li, Z., Jiang, W., Wang, W., Chen, Z., Ling, Z. and Lv, J., 2020. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic: 117, 106677. https://doi.org/ 10.1016/j.ecolind.2020.106677.
Lin, Y.Y., Hu, X.S., Zheng, X.X., Hou, X.Y., Zhang, Z.X. and Zhou, X.N., 2019. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecological Indicators: 96, 392-403.
https://doi.org/10.1016/j.ecolind.2018.09.016.
Ling, Y., Zhang, Z., Zhao, X., Liu, B., Wang, X. and Zuo, L., 2014. Spatio-temporal process of unused land resources in China and its ecological effects, In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, 2665-2668. https://doi.org/10.1002/ldr.4794.
Mafi-Gholami, D. and Jafari, A., 2022. Monitoring changes in the integrity of mangroves in the mangrove biosphere reserve in the face of changes in rainfall and the occurrence of drought. Journal of Marine Science and Technology. https://doi.org/10.22113/jmst.2022.223331.2359.
Mengist, W., Soromessa, T. and Feyisa, G.L., 2023. Forest fragmentation in a forest Biosphere Reserve: Implications for the sustainability of natural habitats and forest management policy in Ethiopia. Resources, Environment and Sustainability: 8, 100058. https://doi.org/10.1016/j.resenv.2022.100058.
Mukul, S.A., 2007. Biodiversity conservation strategies in Bangladesh: The state of protected areas, Tigerpaper: 34, 28-32.
Nunes, J.R., Loures, L., Lopez-Pineiro, A., Loures, A. and Vaz, E., 2016. Using GIS towards the characterization and soil mapping of the caia irrigation perimeter. Sustainability: 8, 368. https://doi.org/10.3390/su8040368.
Resende, F.M., Cimon-Morin, J., Poulin, M., Meyer, L., Joner, D.C. and Loyola, R., 2021. The Importance of Protected Areas and Indigenous Lands in Securing Ecosystem Services and Biodiversity in the Cerrado. Ecosyst. Serv: 49, 101282. https://doi.org/10.1016/j.ecoser.2021.101282.
Sobhani, P., Esmaeilzadeh, H., Barghjelveh, S., Sadeghi, S.M.M. and Marcu, M.V., 2021a. Habitat Integrity in Protected Areas Threatened by LULC Changes and Fragmentation: A Case Study in Tehran Province, Iran. Land: 11, 6. https://doi.org/10.3390/land11010006. Sobhani, P., Esmaeilzadeh, H. and Mostafavi, H., 2021b. Simulation and impact assessment of future land use and land cover changes in two protected areas in Tehran, Iran. Sustainable Cities and Society: 75, 103296. https://doi.org/10.1016/j.scs.2021.103296.
Sobhani, P. and Danehkar, A., 2023. Spatial-temporal changes in mangrove Forests for Analyzing habitat Integrity: A case of Hara Biosphere Reserve, Iran, Environmental and Sustainability Indicators: 20, 100293. https://doi.org/10.1016/j.indic.2023.100293.
Shimu, S., Aktar, M., Afjal, M., Nitu, A., Uddin, M. and Al Mamun, M., 2019. NDVI -based change detection in Sundarban Mangrove Forest using remote sensing data. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh: 1-5. https://doi.org/10.1109/EICT48899.2019.9068819.
Tuffour-Mills, D., Antwi-Agyei, Ph. and Addo-Fordjour, P., 2020. Trends and drivers of land cover changes in a tropical urban forest in Ghana, Trees, Forests and People, 2, 100040. https://doi.org/10.1016/j.tfp.2020.100040.
Wang, E., Song, J.P. and Xu, T., 2011. From “spatial bond” to “spatial mismatch”: An assessment of changing jobs-housing relationship in Beijing, Habitat International: 35, 398-409. https://doi.org/10.1016/j.habitatint.2010.11.008
Wang, G., Yu, Q., Yang, D., Zhang, Q.B., Yue, D.P. and Liu, J.H., 2020. Hierarchical ecological network structure based on complex network analysis. Trans. Chin. Soc. Agric. Mach: 50, 258-266. https://doi.org/ 10.6041/j.issn.1000-1298.2019.07.028
Wang, Y.Q., 2009. Remote sensing of land-cover changes and landscape context of the national parks: A case study of the Northeast Temperate Network, Remote Sensing of Environment Journal: 113, 1453-1461. https://doi.org/10.1016/j.rse.2008.09.017.
Wang, Y., Bonynge, G., Nugranad, J., Traber, M., Ngusaru, A., Tobey, J., Hale, L., Bowen, R. and Makota, V., 2003. Remote sensing of mangrove changes along the Tanzania coast, Marine Geodesy: 26, 35-48.
https://doi.org/10.1080/01490410306708.
Wolf, I.D., Sobhani, P. and Esmaeilzadeh, H., 2023. Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts. Land: 12, 231. https://doi.org/ 10.3390/land12010231.
Xia, Q., Qin, C.Z., Li, H., Huang, C., Su, F.Z. and Jia, M.M., 2020. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecol. Indic: 113, 106196. https://doi.org/10.1016/j.ecolind.2020.106196.
Xie, H., Wang, P. and Huang, H., 2013. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China. Int. J. Environ. Res. Public Health: 10, 328-346. https://doi.org/10.3390/ijerph10010328.
Yu, L., Tian, Y. and Wu, W., 2019. A Dark Target Detection Method Based on the Adjacency Effect: A Case Study on Crack Detection. Sensors (Basel): 19(12), 2829. https://doi.org/10.3390/s19122829. PMID: 31242615; PMCID: PMC6630261.
Zeng, H. and Liu, G.J., 1999. Analysis of regional ER based on landscape structure, China Environ. Sci: 19, 454-457. https://doi.org/10.3321/j.issn.1000-6923.%1999.05.017.
Zhang, F., Yu, S., Jiang, A. and Wang, D., 2018. ER assessment due to land use/cover changes (LULC) in Jinghe county, Xinjiang, China from 1989 to 2014 based on landscape patterns and spatial statistics. Environ. Earth Sci: 77, 491. https://doi.org/10.1007/s12665-018-7676-z
Zhang, M., Zhang, C., Al Kafy, A.A. and Tan, S., 2022. Simulating the Relationship between Land Use/Cover Change and Urban Thermal Environment Using Machine Learning Algorithms in Wuhan City, China. Land: 11, 14. https://doi.org/10.3390/land11010014.
Zhang, W., Chang, W.J., Zhu, Z.C. and Hui, Z., 2020. Landscape ER assessment of Chinese coastal cities based on land use change. Appl. Geogr: 117, 102174. https://doi.org/10.1016/j.apgeog.2020.102174.
Zomer, R.J., Ustin, S.L. and Carpenter, C.C., 2001. Land cover change along tropical and subtropical riparian corridors within the Makalu Barun National Park and Conservation Area, Nepal. Mt. Res. Dev: 21, 175-183. https://doi.org/10.1659/0276-4741(2001)021[0175: LCCATA]2.0.CO;2.
Zurmure, N., Sawant, S., Shindikar, M. and Lele, N., 2021. Mapping the spatio-temporal changes in mangrove vegetation along Thane Creek, India, In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium: 7557-7560. https://igarss2021.com/view_paper.